Answer:
or
Explanation:
The given quadratic equation is
![5x^2-7x+2=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m87gxt7ul8ylsip9j0hr3v6c07wbs1m6g7.png)
Group the constant terms on the right hand side.
![5x^2-7x=0-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/djb8xgst9x204y6kkjgfl5xeeq5k3p81ma.png)
![5x^2-7x=-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/shmea13sovp4xsl9e9ft4ah7ifptbjcwp0.png)
Divide through by 5.
![x^2-(7)/(5)x=-(2)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n0c1w9cjspwxx7rfpigy4kw48wwd6bwo84.png)
Add the square of half the coefficient of x., which is
to both sides of the equation.
![x^2-(7)/(5)x+(49)/(100)=-(2)/(5)+(49)/(100)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g2j4etcy0fpb6dmubrg3l2ys8i63axkz0k.png)
The left hand side is now a perfect square.
![(x-(7)/(10))^2=(9)/(100)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fqccnyiuk8ux2x4eiotlkrclhaqavx8x7x.png)
Take the square root of both sides;
![(x-(7)/(10))=\pm \sqrt{(9)/(100)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oex3lper18wmwnfql3yxe4plj03ox7i8mx.png)
![x-(7)/(10)=\pm (3)/(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xehun17l7mxe63lj44od95e51eqm79qrex.png)
![x=(7)/(10)\pm (3)/(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aq9los44ztpmv4pumk1gvntmiqxq2qlfbl.png)
or
![x=(7+3)/(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o58cy4ghak9p3ps2hww6vvvd2ypjqo0tf2.png)
or
![x=(10)/(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dk4ez6t23fy2r4oy9hvib2ljpvkj3bnay9.png)
or
![x=(2)/(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fv0s5qp2j8nkcli0wdk8kmxd6tqq0uswug.png)