Answer:
option A) Agree, because the solutions are the same is correct.
Explanation:
FIRST SYSTEM
![6x + y= 2](https://img.qammunity.org/2022/formulas/mathematics/college/u6if08hj1eydw9jdhna4ijg0jfdoovwlh0.png)
![-x-y=-3](https://img.qammunity.org/2022/formulas/mathematics/college/rjor0906jjeqr4g13k2bj4yv50by1e9xvc.png)
solving the system
![\begin{bmatrix}6x+y=2\\ -x-y=-3\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/college/3m5yx9ywpcrdcgl9xf65a9wy7ldxfi5eqw.png)
![\mathrm{Multiply\:}-x-y=-3\mathrm{\:by\:}6\:\mathrm{:}\:\quad \:-6x-6y=-18](https://img.qammunity.org/2022/formulas/mathematics/college/vqhiy76e0nmqygarqipi149l2i2mxbal6e.png)
![\begin{bmatrix}6x+y=2\\ -6x-6y=-18\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/college/flwruj9m9saps1j0md0jd5etl4lvpr0mgr.png)
adding the equation
![-6x-6y=-18](https://img.qammunity.org/2022/formulas/mathematics/college/jluzxdusofbyj8i9xsbs3sdvjvhadvd197.png)
![+](https://img.qammunity.org/2022/formulas/mathematics/high-school/u585umy69434cqk0totskfaw5hjcpg1fgi.png)
![\underline{6x+y=2}](https://img.qammunity.org/2022/formulas/mathematics/college/n2x8cyehx6xzhh5j39mhxrj5uly6okuljq.png)
![-5y=-16](https://img.qammunity.org/2022/formulas/mathematics/college/wyx6ub5w67lrx71asb7on208ykoalzqny9.png)
so the system becomes
![\begin{bmatrix}6x+y=2\\ -5y=-16\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/college/ap585fsxkji4c7fjg2mpt3j36lbbskvalk.png)
solve -5y for y
![-5y=-16](https://img.qammunity.org/2022/formulas/mathematics/college/wyx6ub5w67lrx71asb7on208ykoalzqny9.png)
Divide both sides by -5
![(-5y)/(-5)=(-16)/(-5)](https://img.qammunity.org/2022/formulas/mathematics/college/lj8hbklyf9mcry51w1txu99v4q29z6972h.png)
simplify
![y=(16)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/s8ea84tlxmt6ixmtyge3w9s17il32v53hc.png)
![\mathrm{For\:}6x+y=2\mathrm{\:plug\:in\:}y=(16)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/2gqw18bjt2m6uema8mitab485q8nsjzm0p.png)
![6x+(16)/(5)=2](https://img.qammunity.org/2022/formulas/mathematics/college/x43yry06c8moyr8k1cg1riwdmrnz9fgbiv.png)
subtract 16/5 from both sides
![6x+(16)/(5)-(16)/(5)=2-(16)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/66wwp42kpg7uv8aygqyt8eid6d0wn5yvyb.png)
![6x=-(6)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/zmqhdnoamc0f40qhzpc0lpfgawdjr77ezj.png)
Divide both sides by 6
![(6x)/(6)=(-(6)/(5))/(6)](https://img.qammunity.org/2022/formulas/mathematics/college/v4hwtntmuo1cyluzpiwugtlwmj9cwmebrr.png)
![x=-(1)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/tl7setnzmq3p6mkqutxwp7xpmbijgszec2.png)
Therefore, the solution to the FIRST SYSTEM is:
![x=-(1)/(5),\:y=(16)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/nr8s0yccbt6tbm0qcw8nd81kj2x16xaith.png)
SECOND SYSTEM
![2x-3y = -10](https://img.qammunity.org/2022/formulas/mathematics/college/44psgm78s1czdhwxuyhqf1xdd8wga83p9w.png)
![-x-y=-3](https://img.qammunity.org/2022/formulas/mathematics/college/rjor0906jjeqr4g13k2bj4yv50by1e9xvc.png)
solving the system
![\begin{bmatrix}2x-3y=-10\\ -x-y=-3\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/college/k7zppwshk9bja6posahz6nt36q4r4ohyoj.png)
![\mathrm{Multiply\:}-x-y=-3\mathrm{\:by\:}2\:\mathrm{:}\:\quad \:-2x-2y=-6](https://img.qammunity.org/2022/formulas/mathematics/college/832f2j1ygeauih77pdmdboarf8nl0nbsp9.png)
![\begin{bmatrix}2x-3y=-10\\ -2x-2y=-6\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/college/zk0xxyeuvyfzjeepd6503c1e54ws0n86pp.png)
![-2x-2y=-6](https://img.qammunity.org/2022/formulas/mathematics/college/uriz75gmnua3rw20xb5fz80um278t3xibb.png)
![+](https://img.qammunity.org/2022/formulas/mathematics/high-school/u585umy69434cqk0totskfaw5hjcpg1fgi.png)
![\underline{2x-3y=-10}](https://img.qammunity.org/2022/formulas/mathematics/college/e79v3x0rjv2fixgpvbetdfyczo3iuusxsi.png)
![-5y=-16](https://img.qammunity.org/2022/formulas/mathematics/college/wyx6ub5w67lrx71asb7on208ykoalzqny9.png)
so the system of equations becomes
![\begin{bmatrix}2x-3y=-10\\ -5y=-16\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/college/a8mmzpv53o1fz73l4mpd7v8lxyo5tgjd70.png)
solve -5y for y
![-5y=-16](https://img.qammunity.org/2022/formulas/mathematics/college/wyx6ub5w67lrx71asb7on208ykoalzqny9.png)
Divide both sides by -5
![(-5y)/(-5)=(-16)/(-5)](https://img.qammunity.org/2022/formulas/mathematics/college/lj8hbklyf9mcry51w1txu99v4q29z6972h.png)
Simplify
![y=(16)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/s8ea84tlxmt6ixmtyge3w9s17il32v53hc.png)
![\mathrm{For\:}2x-3y=-10\mathrm{\:plug\:in\:}y=(16)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/kc6htscdwti7p8zab577pekevshpjnii7h.png)
![2x-3\cdot (16)/(5)=-10](https://img.qammunity.org/2022/formulas/mathematics/college/tszepu61gcor49hjrs61d3h6dsqpn4tugo.png)
![2x=-(2)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/nz9udpvk75g84bpgrhhf2sh4brgbcrxlij.png)
Divide both sides by 2
![(2x)/(2)=(-(2)/(5))/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/9udu9z87u1sltdqy33vay6mjbwokkxxv04.png)
Simplify
![x=-(1)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/tl7setnzmq3p6mkqutxwp7xpmbijgszec2.png)
Therefore, the solution to the SECOND SYSTEM is:
![x=-(1)/(5),\:y=(16)/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/nr8s0yccbt6tbm0qcw8nd81kj2x16xaith.png)
Conclusion:
As both systems of equations have the same solution.
Therefore, we conclude that Albert is right when says that the two systems of equations shown have the same solutions.
Hence, option A) Agree, because the solutions are the same is correct.