120k views
3 votes
For the angles α and β in the figures, find cos(α + β)?

For the angles α and β in the figures, find cos(α + β)?-example-1
User LBes
by
5.7k points

2 Answers

3 votes

Answer:


cos(\alpha + \beta)=cos(68.4\°) \approx 0.37

Explanation:

Little triangle.

We know both legs, we can use the tangent trigonometric reason to find the angle.


tan\alpha =(2)/(4)\\ tan \alpha=(1)/(2)\\ \alpha=tan^(-1)((1)/(2) )\\ \alpha \approx 26.6\°

Larger triangle.

We know the hypothenuse and the opposite leg. We can use the sin trigonometric reason to find the angle


sin\beta =(4)/(6)\\ sin\beta=(2)/(3)\\ \beta=sin^(-1) ((2)/(3) )\\\beta= 41.8\°

So, the sum of them is


\alpha + \beta = 26.6+41.8= 68.4\°

Then,


cos(\alpha + \beta)=cos(68.4\°) \approx 0.37

Therefore,


cos(\alpha + \beta)=cos(68.4\°) \approx 0.37

User Kay Lamerigts
by
6.0k points
5 votes

Answer:


\cos(\alpha +\beta)=(2)/(3)(1-(√(5))/(5))

Explanation:

Let the hypotenuse of the smaller triangle be h units.

Then; from the Pythagoras Theorem.


h^2=4^2+2^2


h^2=16+4


h^2=20


h=√(20)


h=2√(5)

From the smaller triangle;


\cos (\alpha)=(4)/(2√(5) )=(2)/(√(5) ) and
\sin(\alpha)=(2)/(2√(5) )=(1)/(√(5) )

From the second triangle, let the other other shorter leg of the second triangle be s units.

Then;


s^2+4^2=6^2


s^2+16=36


s^2=36-16


s^2=20


s=√(20)


s=2√(5)


\cos(\beta)=(2√(5) )/(6)=(√(5) )/(3)

and


\sin(\beta)=(4)/(6)=(2)/(3)

We now use the double angle property;


\cos(\alpha +\beta)=\cos(\alpha)\cos(\beta) -\sin(\alpha)\sin(\beta)

we plug in the values to obtain;


\cos(\alpha +\beta)=(2)/(√(5) )* (√(5) )/(3)-(1)/(√(5) )* (2)/(3)


\cos(\alpha +\beta)=(2)/(3)(1-(√(5))/(5))

User Thibaut Dubernet
by
5.4k points