155k views
5 votes
1. Find the missing side length. Round your answer to the nearest tenth.

6.7 21.3 5.5 43.2




2. Find the length of side a. Round to the nearest tenth.

12 378.4 18.3 19.5


3. Find the length of side BA. Round to the nearest hundredth.

0.42 0.65 0.83 1.25

1. Find the missing side length. Round your answer to the nearest tenth. 6.7 21.3 5.5 43.2 2. Find-example-1
1. Find the missing side length. Round your answer to the nearest tenth. 6.7 21.3 5.5 43.2 2. Find-example-1
1. Find the missing side length. Round your answer to the nearest tenth. 6.7 21.3 5.5 43.2 2. Find-example-2
1. Find the missing side length. Round your answer to the nearest tenth. 6.7 21.3 5.5 43.2 2. Find-example-3
User Ederbf
by
5.8k points

1 Answer

3 votes

QUESTION 1

We can use the cosine rule to find the missing side length.

Recall that the cosine rule for a triangle with sides a,b,c and an included angle A is


a^2=b^2+c^2-2bc\cos A

Let the missing side length in the triangle with sides 6, 9 and the included angle of
37\degree be
a units.

We then substitute the values into the cosine rule to obtain;


a^2=6^2+9^2-2(6)(9)\cos 37\degree


a^2=36+81-108\cos 37\degree


a^2=30.747


\Rightarrow a=√(30.747)


\Rightarrow a=√(30.747)


\Rightarrow a=5.5 units to the nearest tenth.

QUESTION 2

We again use the cosine rule:
a^2=b^2+c^2-2bc\cos A

We substitute the given values to obtain;


a^2=11^2+13^2-2(11)(13)\cos 108\degree


a^2=121+169-286\cos 108\degree


a^2=378.379


\Rightarrow a=√(378.379)


\Rightarrow a=19.5 to the nearest tenth

QUESTION 3

We again use the cosine rule :


|BA|^2=((1)/(2))^2+((1)/(3))^2-2((1)/(2))((1)/(3))\cos 100\degree


|BA|^2=0.418899


|BA|=√(0.418899)


|BA|=0.65 to the nearest hundredth

User Donturner
by
5.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.