Answer:
The value of x = -0.17
Explanation:
∵
![2e^(8x)=1-e^(4x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/m7gk9i0xjtx0rdh4m4ecbi5lkasmxfakn7.png)
Let
![e^(4x)=y](https://img.qammunity.org/2020/formulas/mathematics/high-school/871moke89rzocpjqjwwe5bxuls7jjlj0a6.png)
∴
![e^(8x)=y^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ei62joro5sskbb9iqb4pvyqdkclcu2born.png)
∴ 2y² = 1 - y
∴ 2y² + y - 1 =0 ⇒ factorize
∴ (2y - 1)(y + 1) = 0
∴ 2y - 1 = 0 ⇒ 2y = 1 ⇒ y = 1/2
∴ y + 1 = 0 ⇒ y = -1
∵
Note:
⇒ refused
(
never gives -ve values)
∴
⇒ insert ln in both sides
∵
⇒ ln(e) = 1
∴ 4xln(e) = ln(1/2) ⇒ 4x = ln(1/2)
∴ x = [ln(1/2)]/4 = -0.17