63.4k views
4 votes
Solve the equation. Round to the nearest hundredth. Show work.


2e^(8x) = 1 - e^(4x)

User Motti
by
7.8k points

1 Answer

3 votes

Answer:

The value of x = -0.17

Explanation:


2e^(8x)=1-e^(4x)

Let
e^(4x)=y


e^(8x)=y^(2)

∴ 2y² = 1 - y

∴ 2y² + y - 1 =0 ⇒ factorize

∴ (2y - 1)(y + 1) = 0

∴ 2y - 1 = 0 ⇒ 2y = 1 ⇒ y = 1/2

∴ y + 1 = 0 ⇒ y = -1


y=e^(4x)

Note:
e^(4x)=-1refused

(
e^(ax) never gives -ve values)


e^(4x)= 1/2 ⇒ insert ln in both sides


ln(e)^(ax)=axln(e)=ax ⇒ ln(e) = 1

∴ 4xln(e) = ln(1/2) ⇒ 4x = ln(1/2)

∴ x = [ln(1/2)]/4 = -0.17

User Totumus Maximus
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories