63.4k views
4 votes
Solve the equation. Round to the nearest hundredth. Show work.


2e^(8x) = 1 - e^(4x)

User Motti
by
4.9k points

1 Answer

3 votes

Answer:

The value of x = -0.17

Explanation:


2e^(8x)=1-e^(4x)

Let
e^(4x)=y


e^(8x)=y^(2)

∴ 2y² = 1 - y

∴ 2y² + y - 1 =0 ⇒ factorize

∴ (2y - 1)(y + 1) = 0

∴ 2y - 1 = 0 ⇒ 2y = 1 ⇒ y = 1/2

∴ y + 1 = 0 ⇒ y = -1


y=e^(4x)

Note:
e^(4x)=-1refused

(
e^(ax) never gives -ve values)


e^(4x)= 1/2 ⇒ insert ln in both sides


ln(e)^(ax)=axln(e)=ax ⇒ ln(e) = 1

∴ 4xln(e) = ln(1/2) ⇒ 4x = ln(1/2)

∴ x = [ln(1/2)]/4 = -0.17

User Totumus Maximus
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.