188k views
2 votes
Write the equation of the line in slope-intercept form using the two points: E(-1, 3) and F(-2, -3).

User MacTeo
by
7.9k points

1 Answer

5 votes

Answer:


\large\boxed{y=6x+9}

Explanation:

The slope-intercept form of the equation of a line:


y=mx+b

m - slope

b - y-intercept

The formula of a slope:


m=(y_2-y_1)/(x_2-x_1)

We have the points E(-1, 3) and F(-2, -3). Substitute:


m=(-3-3)/(-2-(-1))=(-6)/(-2+1)=(-6)/(-1)=6

Therefore the equation of a line is:


y=6x+b

Put the coordinates of the point E(-1, 3) to the equation and solve it for b:


3=6(-1)+b


3=-6+b add 6 to both sides


9=b\to b=9

Finally we have:


y=6x+9

User Surender Rathore
by
8.2k points

No related questions found