30.3k views
0 votes
Evaluate the log without a calculator ( Show your work )


log_(2) \sqrt[5]{16}

2 Answers

2 votes

Answer: x = 1/5

//Hope it helps.

Evaluate the log without a calculator ( Show your work ) log_(2) \sqrt[5]{16}-example-1
User Rob Wise
by
5.0k points
6 votes

Answer:


\log_2(\sqrt[5]{16} )=(4)/(5)

Explanation:

The given logarithmic expression is:


\log_2(\sqrt[5]{16} )

We rewrite the radical as an exponent to obtain;


\log_2(\sqrt[5]{16} )=\log_2(16^{(1)/(5)} )

Recall and use the power rule;
\log_a(M^n)=n\log_a(M)


\log_2(\sqrt[5]{16} )=(1)/(5)\log_2(16 )

We write 16 as an index number to base 2.


\log_2(\sqrt[5]{16} )=(1)/(5)\log_2(2^4)

We apply the power rule again;


\log_2(\sqrt[5]{16} )=(4)/(5)\log_2(2)

We simplify to get;


\log_2(\sqrt[5]{16} )=(4)/(5)(1)


\log_2(\sqrt[5]{16} )=(4)/(5)

User GoldenretriverYT
by
4.3k points