2.3k views
5 votes
HELP!!!! I NEED HELP WITH THIS.

HELP!!!! I NEED HELP WITH THIS.-example-1

1 Answer

5 votes

Answer:


\large\boxed{A=x^2+23x+49}

Explanation:

Subtract the area of a square (x + 1) × (x + 1)

from the area of a rectangle (x + 10) × (2x + 5)

The area of a square:


A_s=(x+1)(x+1) use FOIL: (a + b)(c + d) = ac + ad + bc + bd


A_s=(x)(x)+(x)(1)+(1)(x)+(1)(1)=x^2+x+x+1=x^2+2x+1

The area of a rectangle:


A_r=(x+10)(2x+5) use FOIL


A_r=(x)(2x)+(x)(5)+(10)(2x)+(10)(5)=2x^2+5x+20x+50=2x^2+25x+50

The area of a figure:


A=A_r-A_s

Substitute:


A=(2x^2+25x+50)-(x^2+2x+1)=2x^2+25x+50-x^2-2x-1

combine like terms


A=(2x^2-x^2)+(25x-2x)+(50-1)=x^2+23x+49

User MadaManu
by
5.0k points