61.5k views
4 votes
Expand the following log:



log_(3) (x^(4) y)

SHOW ALL WORK.

User Razib
by
5.9k points

1 Answer

3 votes

Answer:


\log_(3)(x^4y)=4\log_(3)(x)+\log_(3)(y)

Explanation:

The given logarithmic expression is


log_(3)(x^4y)

Recall and use the product property of logarithm:
\log_a(MN)=\log_a(M)+\log_a(N);

This implies that;


\log_(3)(x^4y)=\log_(3)(x^4)+\log_(3)(y)

Recall again that;
\log_a(M^n)=n\log_a(M);

We apply this property to get;


\log_(3)(x^4y)=4\log_(3)(x)+\log_(3)(y)