112k views
3 votes
How to integrate sec^3x

1 Answer

4 votes

1 Use Integration by Parts on \int \sec^{3}x \, dx∫sec

​3

​​ xdx.

Let u=\sec{x}u=secx, dv=\sec^{2}xdv=sec

​2

​​ x, du=\sec{x}\tan{x} \, dxdu=secxtanxdx, v=\tan{x}v=tanx

2 Substitute the above into uv-\int v \, duuv−∫vdu.

\sec{x}\tan{x}-\int \tan^{2}x\sec{x} \, dxsecxtanx−∫tan

​2

​​ xsecxdx

3 Use Pythagorean Identities: \tan^{2}x=\sec^{2}x-1tan

​2

​​ x=sec

​2

​​ x−1.

\sec{x}\tan{x}-\int (\sec^{2}x-1)\sec{x} \, dxsecxtanx−∫(sec

​2

​​ x−1)secxdx

4 Expand (\sec^{2}x-1)\sec{x}(sec

​2

​​ x−1)secx.

\sec{x}\tan{x}-\int \sec^{3}x-\sec{x} \, dxsecxtanx−∫sec

​3

​​ x−secxdx

5 Use Sum Rule: \int f(x)+g(x) \, dx=\int f(x) \, dx+\int g(x) \, dx∫f(x)+g(x)dx=∫f(x)dx+∫g(x)dx.

\sec{x}\tan{x}-\int \sec^{3}x \, dx+\int \sec{x} \, dxsecxtanx−∫sec

​3

​​ xdx+∫secxdx

6 Set it as equal to the original integral \int \sec^{3}x \, dx∫sec

​3

​​ xdx.

\int \sec^{3}x \, dx=\sec{x}\tan{x}-\int \sec^{3}x \, dx+\int \sec{x} \, dx∫sec

​3

​​ xdx=secxtanx−∫sec

​3

​​ xdx+∫secxdx

7 Add \int \sec^{3}x \, dx∫sec

​3

​​ xdx to both sides.

\int \sec^{3}x \, dx+\int \sec^{3}x \, dx=\sec{x}\tan{x}+\int \sec{x} \, dx∫sec

​3

​​ xdx+∫sec

​3

​​ xdx=secxtanx+∫secxdx

8 Simplify \int \sec^{3}x \, dx+\int \sec^{3}x \, dx∫sec

​3

​​ xdx+∫sec

​3

​​ xdx to 2\int \sec^{3}x \, dx2∫sec

​3

​​ xdx.

2\int \sec^{3}x \, dx=\sec{x}\tan{x}+\int \sec{x} \, dx2∫sec

​3

​​ xdx=secxtanx+∫secxdx

9 Divide both sides by 22.

\int \sec^{3}x \, dx=\frac{\sec{x}\tan{x}+\int \sec{x} \, dx}{2}∫sec

​3

​​ xdx=

​2

​secxtanx+∫secxdx

​​

10 Original integral solved.

\frac{\sec{x}\tan{x}+\int \sec{x} \, dx}{2}

​2

​secxtanx+∫secxdx

​​

11 Use Trigonometric Integration: the integral of \sec{x}secx is \ln{(\sec{x}+\tan{x})}ln(secx+tanx).

\frac{\sec{x}\tan{x}+\ln{(\sec{x}+\tan{x})}}{2}

​2

​secxtanx+ln(secx+tanx)

​​

12 Add constant.

\frac{\sec{x}\tan{x}+\ln{(\sec{x}+\tan{x})}}{2}+C

​2

​secxtanx+ln(secx+tanx)

​​ +C

User Tiberiu Maxim
by
5.6k points