59.8k views
1 vote
Classwork backside T

Classwork backside T-example-1
User Luke
by
5.7k points

1 Answer

2 votes

Answer:

17) Length of arc QPT = 20.9 inches

18) Length of arc QR = 12.6 feet

19) Length of arc PQR = 39.3 meters

20) x = 161°

21) x = 123°

22) x = 24 units

23) EB = 4 units

24) EB = 14 units

Explanation:

∵ The length of any arc = Ф/360 × 2πr

where Ф is the central angle subtended by this arc

17) ∵ m∠RZQ = 60° ⇒ central angle

∵ m∠QZP = 90° ⇒ centeral angle

∵ m∠RZT = 180° ⇒ Z ∈ TR

∴ m∠TZP = 180 - 90 - 60 = 30°

∴ m∠QZT = 90 + 30 = 120° ⇒ central angle

∵ ∠QZT subtended by arc QPT

∵ m∠QZT = 120 , r = 10 inches

∴ Length arc QPT = 120/360 × 2π × 10 = 20.9 inches

18) ∵ m∠QZR = 60° ⇒ central angle subtended by arc QR

∵ r = 12 feet

∴ The length of arc QR = 60/360 × 2π × 12 = 12.6 feet

19) ∵ m∠PZR = 60° + 90° = 150°⇒ central angle subtended

by arc PQR

∵ r = 15 meters

∴ The length of arc PQR = 150/360 × 2π × 15 = 39.3 meters

20) ∵ SU = ST

∴ Measure of arc SU = measure of arc ST

∵ The measure of the circle is 360°

∵ Measure of arc UT = 38°

∴ x = (360 - 38) ÷ 2 = 161°

21) ∵ AB = AC

∴ Measure of arc AB = measure of arc AC

∵ The measure of the circle is 360°

∵ Measure of arc BC = 114°

∴ x = (360 - 114) ÷ 2 = 123°

22) ∵ The two arcs are equal

∴ Their chords are equal in length

∴ 2x - 12 = 36 ⇒ 2x = 36 + 12 ⇒ 2x = 48

∴ x = 24

23) In circle A

∵ AB is a radius and CD is a chord

∵ AB ⊥ CD

∴ AB bisects CD at point E

∵ AB = 20 , CD = 24

∴ CE = 24/2 = 12

In ΔAEC

∵ m∠ AEC = 90

∵ AC = 20 ⇒ radius

∵ AE = √[(AC)² - (CE)²] ⇒ Pythagoras theorem

∴ AE = √(20² - 12²) = 16

∵ AB = 20 ⇒ radius

∴ EB = 20 - 16 = 4

24) In circle A

∵ AB is a radius and CD is a chord

∵ AB ⊥ CD

∴ AB bisects CD at point E

∵ AB = 35 , CD = 56

∴ CE = 56/2 = 28

In ΔAEC

∵ m∠ AEC = 90

∵ AC = 35 ⇒ radius

∵ AE = √[(AC)² - (CE)²] ⇒ Pythagoras theorem

∴ AE = √(35² - 28²) = 21

∵ AB = 35 ⇒ radius

∴ EB = 35 - 21 = 14

User Metalhead
by
5.0k points