Answer:
![\large\boxed{A=480\ m^2}](https://img.qammunity.org/2020/formulas/mathematics/high-school/h3vc9j3q9sennj2q9id7ts9vvcec81kxll.png)
Explanation:
The formula of an area of a kite:
![A=(d_1d_2)/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/bgu98eg9d9ji0ao0fezpj6ifiqy6mb9e63.png)
d₁, d₂ - diagonal
Look at the picture.
Use the Pythagorean theorem.
![x^2+5^2=13^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/zfgksgumjvu42fp5tjfhyqwwa4x6yy2jzr.png)
subtract 25 from both sides
![x^2=144\to x=√(144)\\\\x=12\ m](https://img.qammunity.org/2020/formulas/mathematics/high-school/95p1fhyfih2mkh7lgcnpfkzxtfl48sa21j.png)
Therefore d₁ = (2)(12 m) = 24 m.
![y^2+12^2=37^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/4g9uy3dzz2ghn192v5sofrvg752zanc9a3.png)
subtract 144 from both sides
![y^2=1225\to y=√(1225)\\\\y=35\ m](https://img.qammunity.org/2020/formulas/mathematics/high-school/d16z41yp660d9jq46a9tx6r3m8xi3el89d.png)
Therefore d₂ = 5 + 35 = 40 m.
Substitute:
![A=((24)(40))/(2)=(24)(20)=480\ m^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/28kx6k21vhisnnhwy5p6fjwoibnkp2cowa.png)