Answer:
Part 1) The volume of the cylinder is
![V=108\ units^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/ze8kawyi4e8b77phqrkpz3j9vp9mxn1kxx.png)
part 2) The volume of the sphere is
![V=144\ units^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/cgdt05dxbrtldwrnt7btfyw1jd4pj6lpt5.png)
Explanation:
step 1
Find the radius of the cone
we know that
the volume of the cone is equal to
![V=(1)/(3)\pi r^(2) h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3e7oicl0qo3t8demcjhajan9gazt73j4u8.png)
we have
![V=36\ units^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/g6hj3rgp8kvmb0d0bsyakvtdc27ccxt2sm.png)
![h=r\ units](https://img.qammunity.org/2020/formulas/mathematics/college/a5uljgaausjfgfifhmu6snrs2nae40ktbt.png)
substitute and solve for r
![36=(1)/(3)\pi r^(2) (r)](https://img.qammunity.org/2020/formulas/mathematics/college/tfiazdyws41amaunlq5vs8j2e7tm390ejt.png)
![108=\pi r^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/1iyt4oop360ph3yska0u3yq4w2phvwa3hp.png)
------> equation A
step 2
Find the volume of the cylinder
we know that
the volume of the cylinder is equal to
![V=\pi r^(2) h](https://img.qammunity.org/2020/formulas/mathematics/high-school/73kckbf8njaozpgvi2dq3iydzuyno3du3l.png)
we have
![h=r\ units](https://img.qammunity.org/2020/formulas/mathematics/college/a5uljgaausjfgfifhmu6snrs2nae40ktbt.png)
substitute
![V=\pi r^(2) (r)](https://img.qammunity.org/2020/formulas/mathematics/college/89ykmyc9ybnj5x4i83mri83obz7uznsgzt.png)
![V=\pi r^(3)\ units^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/5x8mm7hcbtaash3xpabobpwgngx8oi4xn3.png)
substitute the equation A in the formula above
----> equation A
![V=\pi (108/ \pi)\ units^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/uiecvp4d0r22uujs4szq58asj0ppvdzmfp.png)
![V=108\ units^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/ze8kawyi4e8b77phqrkpz3j9vp9mxn1kxx.png)
step 3
Find the volume of the sphere
we know that
The volume of the sphere is equal to
![V=(4)/(3)\pi r^(3)\ units^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/jd6v6wzi4clmp0lj8st9w6ew61875l0zjc.png)
substitute the equation A in the formula above
----> equation A
![V=(4)/(3)\pi (108/ \pi)](https://img.qammunity.org/2020/formulas/mathematics/college/li4cdjcpqt4krj3dqum38ublz4afkdezhm.png)
![V=144\ units^(3)](https://img.qammunity.org/2020/formulas/mathematics/college/cgdt05dxbrtldwrnt7btfyw1jd4pj6lpt5.png)