ANSWER
D. Ellipse;
![3{x}^(2) +{y}^(2) + 6x - 6y + 3= 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/aiadkktm20dwsgniu1877k1kp81zroh8km.png)
Step-by-step explanation
The given equation is
![3 {x}^(2) + {y}^(2) = 9](https://img.qammunity.org/2020/formulas/mathematics/high-school/wpvbq926uot67bvoftimpdso1r8yfm2mpz.png)
Dividing through by 9 gives
![\frac{ {x}^(2) }{ 3} + \frac{ {y}^(2) }{9} = 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/4lhoc8iigm46mcix5ycf246etbbvv9hex4.png)
This is the equation of an ellipse centered at the origin.
If this ellipse has been translated, so that its center is now at (-1,3), then the equation of the translated ellipse becomes
![\frac{ {(x + 1) }^(2) }{ 3} + \frac{ {(y - 3)}^(2) }{9} = 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/68ouklqzae8gxvceikva2x7oclm4w3zadp.png)
We multiply through by 9 to get,
![3 {(x + 1)}^(2) + {(y - 3)}^(2) = 9](https://img.qammunity.org/2020/formulas/mathematics/high-school/kukcakpg5dzwqja7jlmql0mj9sdv6b8jkj.png)
Expand to obtain;
![3( {x}^(2) + 2x + 1) + {y}^(2) - 6y + 9 = 9](https://img.qammunity.org/2020/formulas/mathematics/high-school/akiv8uaeo2ykc79q2jwddf2x2jf20r2msd.png)
Expand to obtain;
![3{x}^(2) + 6x + 3+ {y}^(2) - 6y + 9 = 9](https://img.qammunity.org/2020/formulas/mathematics/high-school/cls5yvv9uir61yqdolt7ryvlxzpx7ac8do.png)
Regroup and equate to zero to obtain;
![3{x}^(2) +{y}^(2) + 6x - 6y + 3= 0](https://img.qammunity.org/2020/formulas/mathematics/high-school/aiadkktm20dwsgniu1877k1kp81zroh8km.png)