Answer:
The pair of binomials are;
![(x+1)(3x+8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nqoiuo08gdr7obfdzpm3xx65mzkv0d0xct.png)
and
![(x-1)(3x-8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cf481f5beyoml7xc62o5vsb7ie77ydndab.png)
Explanation:
The given expression is
![3x^2+tx+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/egy8n9obx4vyp1x4jheut9zrhbwfui5hj1.png)
.
If the given quadratic trinomial can be factored as two binomials, then,
By comparing to
![ax^2+bx+c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h659q3lwo0rr5k14nobf201fb1azvp77vr.png)
, we have
![a=3,b=t,c=8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/st873yhf9xj74fl8weipz2t4g7ummgsoag.png)
We find
![ac=3*8=24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y6xzkphlblcg0cg5nb2otm3do2jrl5cyil.png)
We also know that;
![-3* -8=24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xda2o77trkskr4et7r5jweal57ehyc3vlb.png)
This implies that;
![t=8+3=11](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xtw7wfu6cmwlvfu0oewtygkjtetszjqyl9.png)
or
![t=-3-8=-11](https://img.qammunity.org/2020/formulas/mathematics/middle-school/grqmyzclm85fsz7i5xgdz4mw0nm5ld30pt.png)
When t=11;
![3x^2+11x+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g9fdiu0n079r33tq3nbmxa7kbbsmyr9xfl.png)
When we factor this we obtain;
![(x+1)(3x+8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nqoiuo08gdr7obfdzpm3xx65mzkv0d0xct.png)
When t=-11;
![3x^2-11x+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gj43nsajpc8rci4snjgxdfrj7lv5ovw61e.png)
When we factor this we obtain;
![(x-1)(3x-8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cf481f5beyoml7xc62o5vsb7ie77ydndab.png)