Answer:
A=78.23in²
Explanation:
First we need to solve for the radius. The volume of a cylinder can be found using the formula:
![V=\pi r^(2) h](https://img.qammunity.org/2020/formulas/mathematics/high-school/73kckbf8njaozpgvi2dq3iydzuyno3du3l.png)
Now we have the variables:
V = 1177.5 in³
h = 15
r = ?
![1177.5=\pi r^(2)15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fto9qikdskbp0ejjzrkal3spb3ifzx8w6k.png)
![(1177.5)/(15)=(\pi r^(2) )/(15)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p53fcm7myqx4k89j2h51x8ake424wttn0p.png)
![78.5=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qnrhdoyhxt1gl5vmf6iegn7bo0d8wrjmyl.png)
![(78.5)/(\pi )=(\pi r^(2) )/(\pi )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/onoiejh20eke9b5yqqw3oear2nffbt0a8s.png)
≅24.99
≅
![√(24.99)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zyndtet3oif7w0j07geitxcdvwwei04mh3.png)
r≅4.99in
Now since we're looking for the area of the base, we can use the formula for the area of a circle which is:
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
![A=\pi (4.99)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iudj5w7zmhxqaymapmt8j9wxwfogww4m1e.png)
A=78.23in²