Answer:
![8.1\cdot 10^(-4) C^(-1)](https://img.qammunity.org/2020/formulas/physics/high-school/ijqh4wlhae33xf1buhg1wp21729qdv0zak.png)
Step-by-step explanation:
The volumetric expansion of the liquid is given by
![\Delta V=\alpha V_0 \Delta T](https://img.qammunity.org/2020/formulas/physics/high-school/k6p51dn9wqmpcwz1szuft0g6zu7uwy3c13.png)
where
is the coefficient of volume expansion
is the initial volume
is the change in temperature
For the liquid in this problem,
![V_0 = 2.35 m^3\\\Delta T=48.5^(\circ)C\\\Delta V=0.0920 m^3](https://img.qammunity.org/2020/formulas/physics/high-school/avjpxxpk44p8k86cyd2jzm93qssdzx8d5x.png)
So we can solve the equation to find
:
![\alpha=(\Delta V)/(V_0 \Delta T)=((0.0920 m^3))/((2.35 m^3)(48.5^(\circ)C))=8.1\cdot 10^(-4) C^(-1)](https://img.qammunity.org/2020/formulas/physics/high-school/ohin1pag1riczertl8xeagdjtpf6ov9g4p.png)