197k views
3 votes
If sinA=3/5 and cosB=5/13 and if A and B are measures of two angles in Quadrant I, find the exact value of the following functions.

cotB =

sin2A=

3)cos(5pi/6 + B) =

tan(A - pi/4) =

1 Answer

1 vote

Answer:

1.
\cot B=(5)/(12)

2.
\sin2A=(24)/(25)

3.
\cos((5\pi)/(6)+B )=-(5)/(26)(√(3)+1)

4.
\tan(A-(\pi)/(4) )=-(1)/(7)}

Explanation:

If
\sin A=(3)/(5) and
\cos B=(5)/(13), then we can use the Pythagorean identity to find
\cos A and
\sin B.


\sin^2A+\cos^2A=1


((3)/(5) )^2+\cos^2 A=1


(9)/(25)+\cos ^2A=1


\cos^2 A=1-(9)/(25)


\cos^2 A=(16)/(25)


\cos A=\pm \sqrt{(16)/(25)}

Since A is in quadrant I,


\cos A=\sqrt{(16)/(25)}


\cos A=(4)/(5)

Also;


\sin^2B+\cos^2B=1


((5)/(13) )^2+\sin^2 B=1


(25)/(169)+\sin ^2B=1


\sin^2 B=1-(25)/(169)


\sin^2 B=(144)/(169)


\sin B=\pm \sqrt{(144)/(169)}

Since A is in quadrant I,


\sin B=\sqrt{(144)/(169)}


\sin B=(12)/(13)

This implies that;


\cot B=(\cos B)/(\sin B)


\cot B=((5)/(13) )/((12)/(13) )


\cot B=(5)/(12)


\sin2A=2\sin A \cos A


\sin2A=2* (3)/(5) * (4)/(5)


\sin2A=(24)/(25)


\cos((5\pi)/(6)+B )=\cos((5\pi)/(6))\cos(B )-\sin((5\pi)/(6))\sin(B)

This implies that;


\cos((5\pi)/(6)+B )=\cos((5\pi)/(6))* (5)/(13)-\sin((5\pi)/(6))* (5)/(13)


\cos((5\pi)/(6)+B )=-(√(3))/(2)* (5)/(13)-(1)/(2))* (5)/(13)


\cos((5\pi)/(6)+B )=-(5)/(26)(√(3)+1)


\tan(A-(\pi)/(4) )=(\tan A-\tan (\pi)/(4) )/(1+\tan A \tan (\pi)/(4))

But;
\tan A=(\sin A)/(\cos A)


\tan A=((3)/(5) )/((4)/(5) )=(3)/(4)


\tan(A-(\pi)/(4) )=((3)/(4)-\tan (\pi)/(4) )/(1+(3)/(4) \tan (\pi)/(4))

Simplify;


\tan(A-(\pi)/(4) )=((3)/(4)-1 )/(1+(3)/(4))


\tan(A-(\pi)/(4) )=-(1)/(7)}

User Charlotte
by
5.3k points