![2\sin\alpha-\cos\alpha=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iq0185foohscquf0lkmiv7z2l22adupz45.png)
Consider the substitution
. Then by the double angle identities we get
![\sin\alpha=2\sin\frac\alpha2\cos\frac\alpha2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mvljhp8fb7upaqleik95b52qns4xepsdcc.png)
![\cos\alpha=\cos^2\frac\alpha2-\sin^2\frac\alpha2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qdcy1e9g54uv5xi2r0cnqhbu5wijy65g03.png)
We also have
![\tan\frac\alpha2=\beta\implies\begin{cases}\sin\frac\alpha2=\frac\beta{√(1+\beta^2)}\\\\\cos\frac\alpha2=\frac1{√(1+\beta^2)}\end{cases}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mtw8jjmjuoe7b5eu4b0n1u481zqice9rg6.png)
so that
![\sin\alpha=(2\beta^2)/(1+\beta^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6xnwqg4qakte9khbbtbg2mboz3vr636wb3.png)
![\cos\alpha=(1-\beta^2)/(1+\beta^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yvoc745ebtmlqtkwv3wymn40xbtd7yshtf.png)
and the original equation has been transformed to
![(4\beta^2-(1-\beta^2))/(1+\beta^2)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ixaewuji9w6yta9ue9qm4ha3bl007ihf7y.png)
Solve for
:
![5\beta^2-1=2+2\beta^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zpksp214u6de90cflz5s1xjkgf6pjh4y6x.png)
![3\beta^2=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/41lv7ima2d8p361fa6377hvtif701jtdzu.png)
![\beta^2=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ty2hcx0uyh2g4a0mqmqlcucff8swwo7srd.png)
![\beta=\pm1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w08edte0nkpfzirhzxtpqcctwruc8l3vf6.png)
Solving for
gives
![\tan\frac\alpha2=-1\implies\frac\alpha2=-\frac\pi4+n\pi\implies\alpha=-\frac\pi2+2n\pi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d4tdon27zil8hc1y30eufasbt75bnejhn8.png)
![\tan\frac\alpha2=1\implies\frac\alpha2=\frac\pi4+n\pi\implies\alpha=\frac\pi2+2n\pi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/osdkfwjokn8k4pxdqybzk5nsvxkebyohzg.png)
where
is any integer. Both
and
are
-periodic, which is to say
![\cos(x+2n\pi)=\cos x](https://img.qammunity.org/2020/formulas/mathematics/college/dmcp4xcwv9pg68xm9ubp533tqnn0y58hbe.png)
![\sin(x+2n\pi)=\sin x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5gotoj8fposkxnez38q8c51n9nd8vpoxat.png)
so that
![\sin\alpha=\sin\left(\pm\frac\pi2+2n\pi\right)=\sin\left(\pm\frac\pi2\right)=\pm1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y1wavlslt96prjriqkydokzo6wvan00d0l.png)
![\cos\alpha=\cos\left(\pm\frac\pi2+2n\pi\right)=\cos\left(\pm\frac\pi2\right)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qpe4ketnsai0xmu5718x2b1ay0v0142d8y.png)
and we find that
![\sin\alpha+2\cos\alpha=\pm1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oteapshtqmouttoi3ntzw965r6iary2ec7.png)