Answer:
The perimeter of rectangle is
![18\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3sltwq88tgv224s1yh8qztwh754rd372c8.png)
Explanation:
Let
x------> the length of rectangle
y----> the width of rectangle
we know that
The area of the constructed figure is equal to
![A=xy+2x^(2) +2y^(2)\\A=120\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c7zye37bg1la2hi5b2k023che4ekkbvoyd.png)
so
-----> equation A
-----> equation B
substitute equation B in equation A
![120=y(y+5)+2(y+5)^(2) +2y^(2)\\120=y^(2)+5y+2(y^(2)+10y+25)+2y^(2)\\120=y^(2)+5y+2y^(2)+20y+50+2y^(2)\\5y^(2)+25y+50-120=0\\5y^(2)+25y-70=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ua3llwdvr294xisqzkvz4zv4l4iohgfhs7.png)
using a graphing calculator to resolve the quadratic equation
the solution is
![y=2\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/253cqy9gvc25zxhqr8vdag29wi8utkl027.png)
Find the value of x
![x=2+5=7\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/elzl3b35to0jjzzaw77adw7j31ytwkxye8.png)
Find the perimeter of rectangle
The perimeter of rectangle is equal to
![P=2(x+y)\\P=2(7+2)=18\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zid2pa4jwdiyvo42c9thtux1nyw2wuxd1l.png)