24.3k views
2 votes
Definite Integrals Calculus. Can someone help me on where to get started with this. Prove the area of this ellipse

Definite Integrals Calculus. Can someone help me on where to get started with this-example-1
User Richzilla
by
7.7k points

1 Answer

3 votes

If you already know some multivariable calculus, you can simply compute the double integral


\displaystyle\iint_E\mathrm dx\,mathrm dy

where
E denotes the region bounded by the ellipse with equation


(x^2)/(a^2)+(y^2)/(b^2)=1

We can solve for
y:


y=\pm\sqrt{b^2-(b^2x^2)/(a^2)}=\pm\frac ba√(a^2-x^2)

then the integral becomes


\displaystyle\int_(x=-a)^(x=a)\int_(y=-\frac ba√(a^2-x^2))^(y=\frac ba√(a^2-x^2))\mathrm dy\,\mathrm dx

We also could have solve for
x instead and swapped the order of integration, so that the area is


\displaystyle\int_(y=-b)^(y=b)\int_(x=-\frac ab√(b^2-y^2))^(x=\frac ab√(b^2-y^2))\mathrm dx\,\mathrm dy

If you don't know about double integrals yet, these basically reduce to either of the single-variate integrals,


\displaystyle\frac{2b}a\int_(x=-a)^(x=a)√(a^2-x^2)\,\mathrm dx=\frac{4b}a\int_(x=0)^(x=a)√(a^2-x^2)\,\mathrm dx

(making use of the fact that
√(a^2-x^2) is symmetric about 0) or


\displaystyle\frac{2a}b\int_(y=-b)^(y=b)√(b^2-y^2)\,\mathrm dx=\frac{4a}b\int_(y=0)^(y=b)√(b^2-y^2)\,\mathrm dy

either of which can be evaluated with a trigonometric substitution. For instance, taking
x=a\sin t, gives
\mathrm dx=a\cos t\,\mathrm dt, and the integral becomes


\displaystyle\frac{4b}a\int_(a\sin t=0)^(a\sin t=a)√(a^2-(a\sin t)^2)\,a\cos t\,\mathrm dt=4ab\int_(t=0)^(t=\pi/2)√(1-\sin^2t)\cos t\,\mathrm dt


=\displaystyle4ab\int_(t=0)^(t=\pi/2)\cos^2t\,\mathrm dt


=\displaystyle2ab\int_(t=0)^(t=\pi/2)(1+\cos2t)\,\mathrm dt


=2ab\left(t+\frac12\sin2t\right)\bigg|_(t=0)^(t=\pi/2)


=2ab\left(\frac\pi2\right)=\pi ab

The integral with respect to
y can be resolved in a similar way.

###

We also could have converted to polar coordinates first, parameterizing the region
E by


\begin{cases}x=ar\cos t\\y=br\sin t\\0\le r\le1\\0\le t\le2\pi\end{cases}

The Jacobian matrix for this transformation is


\mathbf J=\begin{bmatrix}(\partial x)/(\partial r)&(\partial x)/(\partial t)\\\\(\partial y)/(\partial r)&(\partial y)/(\partial t)\end{bmatrix}=\begin{bmatrix}a\cos t&-ar\sin t\\b\sin t&br\cos t\end{bmatrix}

and its determinant gives
|\det\mathbf J|=abr. So the integral reduces to


\displaystyle\iint_E\mathrm dx\,\mathrm dy=\iint_E|\det\mathbf J|\,\mathrm dr\,\mathrm dt=ab\int_(t=0)^(t=2\pi)\int_(r=0)^(r=1)r\,\mathrm dr\,\mathrm dt


=\displaystyle\frac{ab}2\int_(t=0)^(t=2\pi)\mathrm dt


=\frac{ab}2(2\pi)=\pi ab

User Yarg
by
8.9k points