Answer: The correct options are
(B)
![x=(11+√(61))/(2).](https://img.qammunity.org/2020/formulas/mathematics/high-school/moctdae15ak1kuw1nlxambjqjq7z70uwpd.png)
(D)
![x=(11-√(61))/(2).](https://img.qammunity.org/2020/formulas/mathematics/high-school/5dmg17nxavwt3ifl96lo4odovibu3vqpk7.png)
Step-by-step explanation: We are given to select the values of x that are the roots of the following polynomial :
![x^2-11x+15.](https://img.qammunity.org/2020/formulas/mathematics/high-school/e7l0uuzqzmgolasi9xzf4q506w74sr1kd5.png)
The quadratic equation formed by the given polynomial will be
![x^2-11x+15=0~~~~~~~~~~~~~~~~~~~~~~~~~(i)](https://img.qammunity.org/2020/formulas/mathematics/high-school/pbrmdqidntgl38ri9eo2klr11ywulfsybn.png)
we know that
the solution set of a quadratic equation
is given by
![x=(-b\pm√(b^2-4ac))/(2a).](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z0mdhukhv9wu2qn6otvcgywkoy1to52isf.png)
From equation (i), we have
a = 1, b = -11 and c = 15.
Therefore, the roots of equation (i) will be given by
![x=(-(-11)\pm√((-11)^2-4*1*15))/(2*1)\\\\\\\Rightarrow x=(11\pm√(121-60))/(2)\\\\\\\Rightarrow x=(11\pm√(61))/(2).](https://img.qammunity.org/2020/formulas/mathematics/high-school/oo7gpgwodurp1i5xoe27jjn0x9t8r2i08i.png)
Thus, the roots of the given polynomial are
![x=(11+√(61))/(2),~~~~~x=(11-√(61))/(2).](https://img.qammunity.org/2020/formulas/mathematics/high-school/goz88p3sgz53gdaft73ut28kdwb3286vrs.png)
Options (B) and (D) are CORRECT.