160k views
1 vote
Find the exact value of sine, cosine, and tangent of A and T for each triangle.

Find the exact value of sine, cosine, and tangent of A and T for each triangle.-example-1
User Atmelino
by
5.1k points

1 Answer

2 votes

Answer:

See below

Explanation:

14)

14² = 8² + TV²

196 = 64 + TV²

TV² = 132

TV =√132 = √(4 × 33) = 2√33

sinA = TV/AT = (2√33)/14 = √33/7

cosA = AV /AT = 8/14 = 2/7

tanA = TV/AV = (2√33)/8 = √33)/4

sinT = AV/AT = 8/14 = 4/7

cosT = TV/AT = (2√33)/14 = √33/7

tanT = AV/TV = 8/(2√33) = (4√33)/33

16)

6² = 3² + GT²

36 = 9 + GT ²

GT² = 27

GT = √27 = √(9 × 3) = 3√3

sinA = GT/AT = (3√3)/6 = √3/2

cosA = AG/AT = 3/6 = ½

tanA = GT/AG = (3√3)/3 = √3

sinT = AG/AT = 3/6 = ½

cosT = GT/AT = (3√3)/6 = √3/2

tanT = AG/GT = 6/(3√3) = (2√3)/3

18)

13² = 8² + TX²

169 = 64 + TX²

TX² = 105

TX = √105

sinA = TX/AT = (√105)/13

cosA = AX/AT = 8/13

tanA = TX/AX = (√105)/8

sinT = AX/AT = 8/13

cosT = TX/AT = (√105)/13

tanT = AX/TX = 8/(√105) = (8√105)/105

User Kkurian
by
4.6k points