Answer:
1.12 B. sin(s) = cos(u)
1.13 C. showing similar triangles
Explanation:
1.12 First of all, it is useful to identify the complementary angles. These are the two acute angles in the same right triangle: (s, u) or (t, v), or the adjacent angles that together make a right ange: (s, t) or (u, v).
Only choices B and D involve complementary angles. Only choice B shows the right relationship between trig functions of those angles.
___
1.13 It helps if you've seen the short, cute proof of the Pythagorean theorem using similar triangles. One of the early steps in the proof is to show the triangles are similar: choice C.
Even if you've never seen that proof, you can still make a good guess as to the correct choice. Choices A and D are just plain incorrect. Choice B might be the end result of the proof of the Pythagorean theorem, but won't be a step in that proof. In any event, the point of the proof is to show AC^2 + BC^2 = AB^2, not the equation of choice B.
That leaves choice C, which is both correct and likely to be a step in the proof.