132k views
4 votes
Consider the infinite geometric series ∑∞ n=1 -4(1/3)^n-1

a. Write the first four terms of the series.
b. Does the series diverge or converge.
c. If the series has a sum, find the sum.

1 Answer

5 votes

a. The series is


\displaystyle\sum_(n=1)^\infty-4\left(\frac13\right)^(n-1)=-4-\frac43-\frac4{3^2}-\frac4{3^3}-\cdots

(first four terms are listed)

b. The series converges because this is a geometric series with
r=\frac13<1.

c. Let
S_N be the
N-th partial sum of the series:


S_N=\displaystyle\sum_(n=1)^N-4\left(\frac13\right)^(n-1)


S_N=-4-\frac43-\frac4{3^2}-\cdots-\frac4{3^(N-1)}

Multiplying both sides by
\frac13 gives


\frac13S_N=-\frac43-\frac4{3^2}-\frac4{3^3}-\cdots-\frac4{3^N}

Subtracting this from
S_N gives


S_N-\frac13S_N=\frac23S_N=-4+\frac4{3^N}


\implies S_N=-6+\frac6{3^N}

As
N gets larger and larger
(N\to\infty) the rational term converges to 0 and we're left with


\displaystyle\lim_(N\to\infty)S_N=\sum_(n=1)^\infty-4\left(\frac13\right)^(n-1)=-6

User EvgenyV
by
5.8k points