73.3k views
5 votes
Plz help asap

Use the Pythagorean Identity to find the missing trig function.


a) Find
sin0 if
cos0=(1)/(4)

b) Find
cos0 if
sin0=(2)/(5)

c) Find
sin0 if
cos0=(3)/(4)

User Qun Li
by
8.1k points

2 Answers

1 vote

Answer:

Explanation:

a) cos∅=
(1)/(4)

√(4²-1²)=√(16-1)=√(15)

∴sin∅=
(√(15) )/(4)

b) sin∅=
(2)/(5)

√(5²-2²)=√(25-4)=√(21)

∴cos∅=
(√(21) )/(5)

c) cos∅=
(3)/(4)

√(4²-3²)=√(16-9)=√(7)

∴sin∅=
(√(7) )/(4)

User Poala Astrid
by
8.8k points
6 votes

Answer:
\bold{a)\ sin\ \theta=(√(15))/(4)}


\bold{b)\ cos\ \theta=(√(21))/(5)}


\bold{c)\ sin\ \theta=(\sqrt7)/(4)}

Explanation:

The Pythagorean Theorem is: a² + b² = c² where;

  • a represents adjacent side
  • b represents opposite side
  • c represents hypotenuse


a)\ cos\ \theta=(adjacent)/(hypotenuse)=(1)/(4)\\\\1^2+(opposite)^2=4^2\\1 + (opposite)^2=16\\.\ \quad (opposite)^2=15\\.\qquad opposite=√(15)\\\\sin\ \theta = (opposite)/(hypotenuse)=\boxed{(√(15))/(4)}


b)\ sin\ \theta=(opposite)/(hypotenuse)=(2)/(5)\\\\(adjacent)^2+2^2=5^2\\(adjacent)^2+4=25\\(adjacent)^2\qquad=21\\adjacent\qquad \ =√(21)\\\\cos\ \theta = (adjacent)/(hypotenuse)=\boxed{(√(21))/(5)}


a)\ cos\ \theta=(adjacent)/(hypotenuse)=(3)/(4)\\\\3^2+(opposite)^2=4^2\\9 + (opposite)^2=16\\.\ \quad (opposite)^2=7\\.\qquad opposite=√(7)\\\\sin\ \theta = (opposite)/(hypotenuse)=\boxed{(√(7))/(4)}

User Bky
by
8.3k points