Answer:
Option C (4096π in²)
Explanation:
Area of the circle = 256π in²
We know that
, where r = radius of the circle
So,
![256\pi = \pi r^(2)](https://img.qammunity.org/2022/formulas/mathematics/college/w9f8q2e9vit20ens4o4uq02fbwns3esnzr.png)
Cancelling π from both the sides,
![=> r^(2) = 256](https://img.qammunity.org/2022/formulas/mathematics/college/gecagc3hms0gy3t21hjwk22de2vmljeoys.png)
![=> r = √(256) = 16](https://img.qammunity.org/2022/formulas/mathematics/college/v64xmqrhw5y98c2gg4c97qc8l8k9k59o7y.png)
The radius of the circle = 16 in.
When the radius is multiplied with 4 , new radius = 16×4 = 64 in.
New Area =
![\pi (64)^(2) =4096\pi \: in^(2)](https://img.qammunity.org/2022/formulas/mathematics/college/vbvcb2m754ygd2yu676h4w992517uwxu0w.png)