Hello!
The answer is:
![Sin(u)=0.86\\Cos(u)=0.50\\Tan(u)=1.73](https://img.qammunity.org/2020/formulas/mathematics/middle-school/il8i94ccu4fnb9olsz658erectdj6gtfsh.png)
Why?
Since it's a right triangle, and we have the adjacent and opposite sides size (
), we can solve it using following the next steps:
Tan(u),
We can find the tangent using the following formula:
![tan(u)=(OppositeSide)/(AdjacentSide)= (√(111) )/(√(37))=(10.54)/(6.08)\\tan(u)=1.73](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rs216okzn2tj5rvc7efhwa3u5wcmj1bhbc.png)
Sin(u),
To find the sin(u) we need first to find the hypotenuse of the triangle using the Pythagorean Theorem, so:
![c=\sqrt{a^(2)+b^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/crv3xgprqdlwp6iga253hdi9is104l9d1j.png)
Where:
![c=hypotenuse\\a=FirstTriangleSide\\b=SecondTriangleSide](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mstlv7y48ldi4glp4edmi3pwdp8lrguryn.png)
Substituting we have:
![hypotenuse=\sqrt{√(37)^(2)+√(111)^(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/74klt7397c1m1rzvze86hd4ts2az207ub9.png)
![hypotenuse=√(37+111)=√(148)=12.17](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jkwv6qpv9res679m8gdymbypemdp4s3u4s.png)
Then, we can calculate the sin(u) using the following formula:
![Sin(u)(OppositeSide)/(Hypotenuse)=(√(111) )/(12.17)=0.86](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nv4e48yc77abve372j8rfnd280vjivkeko.png)
Finally, we can calculate the cos(u) by using the following formula:
Cos(u),
![cos(u)=(AdjacentSide)/(Hypotenuse)=(√(37) )/(12.17)=0.50](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8m7x2s7lhuvweu7qwwng2udhyqz7cvymuw.png)
Hence,
We have that:
![Sin(u)=0.86\\Cos(u)=0.50\\Tan(u)=1.73](https://img.qammunity.org/2020/formulas/mathematics/middle-school/il8i94ccu4fnb9olsz658erectdj6gtfsh.png)
Have a nice day!