198k views
4 votes
X and y vary inversely and x=50 when y=5 find y when x=10 what is k?

x and y vary directly and x=6 when y=42 find k what is y when x=12

1 Answer

3 votes

Answer:

Part A)

1)
k=250

2)
y=25

Part B)

1)
k=7

2)
y=84

Explanation:

Part 1) x and y vary inversely and x=50 when y=5 find y when x=10 what is k?

we know that

A relationship between two variables, x, and y, represent an inverse variation if it can be expressed in the form
y*x=k or
y=k/x

step 1

Find the value of k

x=50 when y=5

substitute the values


y*x=k ------>
5*50=k ----->
k=250

The equation is equal to


y*x=250 or
y=250/x

step 2

Find y when x=10

substitute the value of x in the equation and solve for y


y*(10)=250


y=250/10=25

Part B) x and y vary directly and x=6 when y=42 find k what is y when x=12

we know that

A relationship between two variables, x, and y, represent a direct variation if it can be expressed in the form
y/x=k or
y=kx

step 1

Find the value of k

x=6 when y=42

substitute the values


y/x=k ------>
42/6=k ----->
k=7

The equation is equal to


y/x=7 or
y=7x

step 2

Find y when x=12

substitute the value of x in the equation and solve for y


y=7(12)=84

User Karan
by
5.8k points