Answer:
4 hours
Explanation:
Let x minutes be the time needed for the powerful pomp to fill the pool. Then x+120 minutes is the time needed to the other pomp to fill the pool. The powerful pomp fills
of the pool in a minute and the other pomp fills
of the pool in a minute. Filling together, they fill
of the pool in a minute and
![144\cdot \left((1)/(x)+(1)/(x+120)\right)](https://img.qammunity.org/2020/formulas/mathematics/college/eov2rkmxjib3i9ikpfzc088j4hxidjhou5.png)
in 144 minutes.
Thus,
![144\cdot \left((1)/(x)+(1)/(x+120)\right)=1.](https://img.qammunity.org/2020/formulas/mathematics/college/ijppgsceld8hrqmv5wdw6vax7ma36gc23w.png)
Solve this equation:
![(144(x+120)+144x)/(x(x+120))=1,\\ \\144x+144\cdot 120+144x=x^2+120x,\\ \\x^2-168x-17280=0,\\ \\D=(-168)^2-4\cdot (-17280)=97344,\\ \\x_(1,2)=(-(-168)\pm √(97344))/(2)=(168\pm 312)/(2)=-72,\ 240.](https://img.qammunity.org/2020/formulas/mathematics/college/pcg7zz1o1d7jxbysj8pqsqnubmu16lds49.png)
Hence, it is needed the powerful pomp 240 minutes = 4 hours to fill the pool.