89.6k views
4 votes
In a right triangle, angle is an acute angle and sin angle = 4/9. Evaluate the other five trigonometric functions of angle.

1 Answer

2 votes

Answer:

Part 1)
cos(A)=(√(65))/(9)

Part 2)
tan(A)=4(√(65))/(65)

Part 3)
cot(A)=(√(65))/(4)

Part 4)
sec(A)=9(√(65))/(65)

Part 5)
csc(A)=(9)/(4)

Explanation:

Let

A------> the angle

we have that


sin(A)=(4)/(9)

step 1

Find the cos(A)

we know that


cos^(2)(A)+sin^(2)(A)=1

substitute the value of sin(A)


cos^(2)(A)+((4)/(9))^(2)=1


cos^(2)(A)=1-((4)/(9))^(2)


cos^(2)(A)=1-((16)/(81))


cos^(2)(A)=((65)/(81))


cos(A)=(√(65))/(9)

step 2

Find the tan(A)

we know that


tan(A)=(sin(A))/(cos(A))

substitute the values


tan(A)=((4)/(9))/((√(65))/(9))


tan(A)=(4)/(√(65))


tan(A)=4(√(65))/(65)

step 3

Find the cot(A)

we know that


cot(A)=(1)/(tan(A))

we have


tan(A)=(4)/(√(65))

substitute


cot(A)=(1)/((4)/(√(65)))


cot(A)=(√(65))/(4)

step 4

Find the sec(A)

we know that


sec(A)=(1)/(cos(A))

we have


cos(A)=(√(65))/(9)

substitute


sec(A)=(1)/((√(65))/(9))


sec(A)=(9)/(√(65))


sec(A)=9(√(65))/(65)

step 5

Find the csc(A)

we know that


csc(A)=(1)/(sin(A))

we have


sin(A)=(4)/(9)

substitute the value


csc(A)=(1)/((4)/(9))


csc(A)=(9)/(4)

User Purres
by
4.3k points