142k views
3 votes
Please help me with this​

Please help me with this​-example-1

1 Answer

4 votes

Answer:

20)
\displaystyle [4, 1]

19)
\displaystyle [-5, 1]

18)
\displaystyle [3, 2]

17)
\displaystyle [-2, 1]

16)
\displaystyle [7, 6]

15)
\displaystyle [-3, 2]

14)
\displaystyle [-3, -2]

13)
\displaystyle NO\:SOLUTION

12)
\displaystyle [-4, -1]

11)
\displaystyle [7, -2]

Explanation:

20) {−2x - y = −9

{5x - 2y = 18

[5x - 2y = 18]

{−2x - y = −9

{2x - ⅘y = 7⅕ >> New Equation

__________


\displaystyle (-1(4)/(5)y)/(-1(4)/(5)) = (-1(4)/(5))/(-1(4)/(5))


\displaystyle y = 1[Plug this back into both equations above to get the x-coordinate of 4];
\displaystyle 4 = x

_______________________________________________

19) {−5x - 8y = 17

{2x - 7y = −17

−⅞[−5x - 8y = 17]

{4⅜x + 7y = −14⅞ >> New Equation

{2x - 7y = −17

_____________


\displaystyle (6(3)/(8)x)/(6(3)/(8)) = (-31(7)/(8))/(6(3)/(8))


\displaystyle x = -5[Plug this back into both equations above to get the y-coordinate of 1];
\displaystyle 1 = y

_______________________________________________

18) {−2x + 6y = 6

{−7x + 8y = −5

−¾[−7x + 8y = −5]

{−2x + 6y = 6

{5¼x - 6y = 3¾ >> New Equation

____________


\displaystyle (3(1)/(4)x)/(3(1)/(4)) = (9(3)/(4))/(3(1)/(4))


\displaystyle x = 3[Plug this back into both equations above to get the y-coordinate of 2];
\displaystyle 2 = y

_______________________________________________

17) {−3x - 4y = 2

{3x + 3y = −3

__________


\displaystyle (-y)/(-1) = (-1)/(-1)


\displaystyle y = 1[Plug this back into both equations above to get the x-coordinate of −2];
\displaystyle -2 = x

_______________________________________________

16) {2x + y = 20

{6x - 5y = 12

−⅓[6x - 5y = 12]

{2x + y = 20

{−2x + 1⅔y = −4 >> New Equation

____________


\displaystyle (2(2)/(3)y)/(2(2)/(3)) = (16)/(2(2)/(3))


\displaystyle y = 6[Plug this back into both equations above to get the x-coordinate of 7];
\displaystyle 7 = x

_______________________________________________

15) {6x + 6y = −6

{5x + y = −13

−⅚[6x + 6y = −6]

{−5x - 5y = 5 >> New Equation

{5x + y = −13

_________


\displaystyle (-4y)/(-4) = (-8)/(-4)


\displaystyle y = 2[Plug this back into both equations above to get the x-coordinate of −3];
\displaystyle -3 = x

_______________________________________________

14) {−3x + 3y = 3

{−5x + y = 13

−⅓[−3x + 3y = 3]

{x - y = −1 >> New Equation

{−5x + y = 13

_________


\displaystyle (-4x)/(-4) = (12)/(-4)


\displaystyle x = -3[Plug this back into both equations above to get the y-coordinate of −2];
\displaystyle -2 = y

_______________________________________________

13) {−3x + 3y = 4

{−x + y = 3

−⅓[−3x + 3y = 4]

{x - y = −1⅓ >> New Equation

{−x + y = 3

________


\displaystyle 1(2)/(3) ≠ 0; NO\:SOLUTION

_______________________________________________

12) {−3x - 8y = 20

{−5x + y = 19

[−3x - 8y = 20]

{−⅜x - y = 2½ >> New Equation

{−5x + y = 19

__________


\displaystyle (-5(3)/(8)x)/(-5(3)/(8)) = (21(1)/(2))/(-5(3)/(8))


\displaystyle x = -4[Plug this back into both equations above to get the y-coordinate of −1];
\displaystyle -1 = y

_______________________________________________

11) {x + 3y = 1

{−3x - 3y = −15

___________


\displaystyle (-2x)/(-2) = (-14)/(-2)


\displaystyle x = 7[Plug this back into both equations above to get the y-coordinate of −2];
\displaystyle -2 = y

I am delighted to assist you anytime my friend!

User Amir Mgh
by
4.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.