142k views
3 votes
Please help me with this​

Please help me with this​-example-1

1 Answer

4 votes

Answer:

20)
\displaystyle [4, 1]

19)
\displaystyle [-5, 1]

18)
\displaystyle [3, 2]

17)
\displaystyle [-2, 1]

16)
\displaystyle [7, 6]

15)
\displaystyle [-3, 2]

14)
\displaystyle [-3, -2]

13)
\displaystyle NO\:SOLUTION

12)
\displaystyle [-4, -1]

11)
\displaystyle [7, -2]

Explanation:

20) {−2x - y = −9

{5x - 2y = 18

[5x - 2y = 18]

{−2x - y = −9

{2x - ⅘y = 7⅕ >> New Equation

__________


\displaystyle (-1(4)/(5)y)/(-1(4)/(5)) = (-1(4)/(5))/(-1(4)/(5))


\displaystyle y = 1[Plug this back into both equations above to get the x-coordinate of 4];
\displaystyle 4 = x

_______________________________________________

19) {−5x - 8y = 17

{2x - 7y = −17

−⅞[−5x - 8y = 17]

{4⅜x + 7y = −14⅞ >> New Equation

{2x - 7y = −17

_____________


\displaystyle (6(3)/(8)x)/(6(3)/(8)) = (-31(7)/(8))/(6(3)/(8))


\displaystyle x = -5[Plug this back into both equations above to get the y-coordinate of 1];
\displaystyle 1 = y

_______________________________________________

18) {−2x + 6y = 6

{−7x + 8y = −5

−¾[−7x + 8y = −5]

{−2x + 6y = 6

{5¼x - 6y = 3¾ >> New Equation

____________


\displaystyle (3(1)/(4)x)/(3(1)/(4)) = (9(3)/(4))/(3(1)/(4))


\displaystyle x = 3[Plug this back into both equations above to get the y-coordinate of 2];
\displaystyle 2 = y

_______________________________________________

17) {−3x - 4y = 2

{3x + 3y = −3

__________


\displaystyle (-y)/(-1) = (-1)/(-1)


\displaystyle y = 1[Plug this back into both equations above to get the x-coordinate of −2];
\displaystyle -2 = x

_______________________________________________

16) {2x + y = 20

{6x - 5y = 12

−⅓[6x - 5y = 12]

{2x + y = 20

{−2x + 1⅔y = −4 >> New Equation

____________


\displaystyle (2(2)/(3)y)/(2(2)/(3)) = (16)/(2(2)/(3))


\displaystyle y = 6[Plug this back into both equations above to get the x-coordinate of 7];
\displaystyle 7 = x

_______________________________________________

15) {6x + 6y = −6

{5x + y = −13

−⅚[6x + 6y = −6]

{−5x - 5y = 5 >> New Equation

{5x + y = −13

_________


\displaystyle (-4y)/(-4) = (-8)/(-4)


\displaystyle y = 2[Plug this back into both equations above to get the x-coordinate of −3];
\displaystyle -3 = x

_______________________________________________

14) {−3x + 3y = 3

{−5x + y = 13

−⅓[−3x + 3y = 3]

{x - y = −1 >> New Equation

{−5x + y = 13

_________


\displaystyle (-4x)/(-4) = (12)/(-4)


\displaystyle x = -3[Plug this back into both equations above to get the y-coordinate of −2];
\displaystyle -2 = y

_______________________________________________

13) {−3x + 3y = 4

{−x + y = 3

−⅓[−3x + 3y = 4]

{x - y = −1⅓ >> New Equation

{−x + y = 3

________


\displaystyle 1(2)/(3) ≠ 0; NO\:SOLUTION

_______________________________________________

12) {−3x - 8y = 20

{−5x + y = 19

[−3x - 8y = 20]

{−⅜x - y = 2½ >> New Equation

{−5x + y = 19

__________


\displaystyle (-5(3)/(8)x)/(-5(3)/(8)) = (21(1)/(2))/(-5(3)/(8))


\displaystyle x = -4[Plug this back into both equations above to get the y-coordinate of −1];
\displaystyle -1 = y

_______________________________________________

11) {x + 3y = 1

{−3x - 3y = −15

___________


\displaystyle (-2x)/(-2) = (-14)/(-2)


\displaystyle x = 7[Plug this back into both equations above to get the y-coordinate of −2];
\displaystyle -2 = y

I am delighted to assist you anytime my friend!

User Amir Mgh
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.