9,306 views
18 votes
18 votes
Condense log₂ 4 + log₂ 5

User Berislav Lopac
by
2.9k points

2 Answers

20 votes
20 votes

Answer:
\log_2(20)

Work Shown:


\log_2(4) + \log_2(5)\\\\\log_2(4*5)\\\\\log_2(20)\\\\

The rule used is
\log_(b)(\text{x}) + \log_(b)(\text{y}) = \log_(b)(\text{xy})

User Fabdarice
by
2.3k points
14 votes
14 votes


\large{\textbf{Heya !}}


\large\sf{\bigstar Given:-}

  • ㏒ expression =
    \sf{\log_24+\log_25}


\large{\sf{\bigstar To\quad Find:-}

  • Condense the ㏒ into ONE expression - ?


\large{\sf{\bigstar Solution\quad steps:-}

`To find what we want we need to apply ㏒ rules


\large{\sf{\longmapsto{log_ba+log_bc=log_b(ac)}

using formula,


\large{\sf{\longmapsto{log_24+log_25=log_2(4\cdot5)}

simplifying,


\large{\sf{\longmapsto{log_220}

`hope it was helpful ! ~

User Vitalii Bratok
by
2.9k points