182k views
3 votes
Prove this identity using the product-to-sum identity for sin... sin^2 x=(1-cos(2x))/(2)

1 Answer

5 votes

Answer:

sin²x = (1 - cos2x)/2 ⇒ proved down

Explanation:

∵ sin²x = (sinx)(sinx) ⇒ add and subtract (cosx)(cosx)

(sinx)(sinx) + (cosx)(cosx) - (cosx)(cosx)

∵ (cosx)(cosx) - (sinx)(sinx) = cos(x + x) = cos2x

∴ - cos2x + cos²x = -cos2x + (1 - sin²x)

∴ 1 - cos2x - sin²x = (1 - cos2x)/2 ⇒ equality of the two sides

∴ (1 - cos2x) - 1/2(1 - cos2x) = sin²x

∴ 1/2(1 - cos2x) = sin²x

∴ sin²x = (1 - cos2x)/2

User Svrist
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories