200k views
5 votes
Y=x.arctan(x)^1/2. find dy/dx. pls show steps​

1 Answer

5 votes


y=x(\arctan x)^(1/2)

Use the product rule first:


(\mathrm dy)/(\mathrm dx)=(\mathrm dx)/(\mathrm dx)(\arctan x)^(1/2)+x(\mathrm d(\arctan x)^(1/2))/(\mathrm dx)


(\mathrm dy)/(\mathrm dx)=(\arctan x)^(1/2)+x(\mathrm d(\arctan x)^(1/2))/(\mathrm dx)

Use the chain rule to compute the derivative of
(\arctan x)^(1/2). Let
z=(\arctan x)^(1/2) and take
u=\arctan x, so that by the chain rule


(\mathrm dz)/(\mathrm dx)=(\mathrm dz)/(\mathrm du)(\mathrm du)/(\mathrm dx)


(\mathrm dz)/(\mathrm du)=(\mathrm du^(1/2))/(\mathrm du)=\frac12u^(-1/2)


(\mathrm du)/(\mathrm dx)=(\mathrm d\arctan x)/(\mathrm dx)=\frac1{1+x^2}


\implies(\mathrm d(\arctan x)^(1/2))/(\mathrm dx)=\frac1{2(\arctan x)^(1/2)(1+x^2)}

So we have


(\mathrm dy)/(\mathrm dx)=(\arctan x)^(1/2)+\frac x{2(\arctan x)^(1/2)(1+x^2)}

You can rewrite this a bit by factoring
(\arctan x)^(-1/2), just to make it look neater:


(\mathrm dy)/(\mathrm dx)=\frac1{2(\arctan x)^(1/2)}\left(2\arctan x+\frac x{1+x^2}\right)

User Doilio Matsinhe
by
5.1k points