40.7k views
24 votes
Sin^2(a+b)-sin^2(a-b)=sin(2a)sin(2b)

User Rhavendc
by
7.6k points

1 Answer

2 votes

Answer:

Explanation:

To prove sin(a+b)*sin(a-b)=cos^2b-cos^2a

we simplify the left side sin(a+b)*sin(a-b) first

sin(a+b) = sin a cos b + cos a sin b

sin(a-b) = sin a cos b - cos a sin b

sin(a+b)*sin(a-b) = (sin a cos b + cos a sin b) x (sin a cos b -cos a sin b)

sin a cos b((sin a cos b + cos a sin b) - cos a sin b (sin a cos b + cos a sin b)

open the bracket

sin a cos b(sin a cos b) + sin a cos b(cos a sin b) -cos a sin b (sin a cos b)+ cos a sin b ( cos a sin b)

sin²a cos²b + sin a cos b cos a sin b - cos a sin b sin a cos b + cos²a sin²b

sin²a cos²b + 0 + cos²a sin²b

sin²a cos²b + cos²a sin²b

sin²a = 1-cos² a

sin²b = 1-cos² b

(1-cos² a)cos² b - cos² a(1-cos² b)

= cos² b - cos² a cos² b - cos² a +cos² a cos² b

choose like terms

cos² b - cos² a - cos² a cos² b + cos² a cos² b = cos² b - cos² a + 0

cos² b - cos² a

left hand side equals right hand side

User BravoZulu
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.