4
If two triangles are similar, corresponding sides are in proportion. So, we have
![(17.5)/(14) = (2y)/(y+3)](https://img.qammunity.org/2020/formulas/mathematics/college/qiaeip0x22wbnxm8stvfhbaa9r7asgrf0g.png)
Multiply both sides by
to get
![17.5(y+3) = 28y](https://img.qammunity.org/2020/formulas/mathematics/college/2qc3xly0a6bstj64dkkecmrk5bts730fma.png)
Expand the left hand side:
![17.5y + 52.5 = 28y](https://img.qammunity.org/2020/formulas/mathematics/college/wqbjr4n3palochbkef8j4s0bxko79byd39.png)
Subtract 17.5y from both sides:
![52.5 = 10.5y](https://img.qammunity.org/2020/formulas/mathematics/college/88tjdlht9jczyob98170zkvyzasc4myq8m.png)
Divide both sides by 10.5:
![y = 5](https://img.qammunity.org/2020/formulas/mathematics/high-school/8dt98xb4fsifqnbjarhlzg529e5h26o45a.png)
8
Given the ratio
![(x)/(y) = (4)/(11)](https://img.qammunity.org/2020/formulas/mathematics/college/6qgqlcrxnuqt1o99x72gi5lylfgbrebbdq.png)
we can deduce
![x = (4)/(11)y](https://img.qammunity.org/2020/formulas/mathematics/college/icygvgmaufnvzammcrjffdqieprn2r99qd.png)
The perimeter of the rectangle is given by
![2x+2y = 2\cdot (4)/(11)y + 2y = (30)/(11)y = 650 \iff y = (715)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/ko457lag6mypugo5uv3i7sorof5gw0b780.png)
Now we can deduce the value for x:
![x = (4)/(11)\cdot(715)/(3) = (260)/(3)](https://img.qammunity.org/2020/formulas/mathematics/college/wmlkvemxync2vvayxwm5hpem46c36o8g9x.png)