200k views
0 votes
Given: Circle k(O), O∈

PL

KE
- tangent at E
KE=18, PL=15
Find: KP

Given: Circle k(O), O∈ PL KE - tangent at E KE=18, PL=15 Find: KP-example-1
User Jupiteror
by
5.9k points

2 Answers

6 votes

Answer:

The length of KP = 12 unit.

Explanation:

Given: Circle with center O. KE is tangent at E and PL is diameter.

KE=18, PL=15 find KP

Let length of KP be x

Tangent- Secant Theorem: The square of length of tangent is equal to product of length of sub part of secant.


KE^2=KP\cdot KL

KE = 18

KP = x

KL= x+15


18^2=x(x+15)


x^2+15x-324=0


(x+27)(x-12)=0

Set each factor to 0 and solve for x


x+27=0\Rightarrow x=-27


x-12=0\Rightarrow x=12

We will ignore negative value of x because length can't be negative.

Hence, The length of KP = 12 unit.

User Wtr
by
6.2k points
2 votes

Answer:

KP=12

Explanation:

Use property for circle and tangent segment:

tangent segment² = external secant segment · secant segment.

In your case,

tangent segment KE = 18;

external secant segment KP;

secant segment KL = KP + 15.

Thus,

18²=KP(KP+15),

KP²+15KP-324=0,

D=15^2-4·(-324)=225+1296=1521,

KP=(-15±39)/2=-27, 12.

The segment cannot be of negative length, then KP=12.

User Mickadoo
by
6.1k points