Answer:
![(2x-3y)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a09mx9432alj0j9y7w7sx3kanz44cua0ok.png)
Explanation:
Dividing by a fraction means multiplying by the reciprocal. So we can write the problem as:
![(5)/(2x+3y)*(4x^2-9y^2)/(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lp7vpcsur40fuwk9byumdffyddogewuyml.png)
We can simplify
into
by using the formula
![a^2-b^2=(a+b)(a-b)](https://img.qammunity.org/2020/formulas/mathematics/high-school/mpelom9ylwg2nq2fvp5mq21fxoygocnfpy.png)
Now we can write:
![(5)/(2x+3y)*((2x-3y)(2x+3y))/(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9cdl2z0hgh89biuhh69hjq96kaivunxodv.png)
We can cancel out (2x+3y) and also reduce "5" and 10". Thus we have:
![(5)/(2x+3y)*((2x-3y)(2x+3y))/(10)\\=(1)/(1)*((2x-3y))/(2)\\=(2x-3y)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/owh6eeb8ds3j9jhdltj2g7z97rh4rsyfgn.png)
This is the simplified form.