Answer:
(a)t=10.5 seconds
(b)1764 feet
(c)t=21 seconds
Explanation:
The equation of the projectile is given by:
![H= -16t^2 + 336t](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n0max27rj8t5gv399d44iw9qj6gdu7k5b9.png)
(1)The ash projectile reaches its maximum height when the slope of the line is equal to zero.
First, we find the derivative of H.
![H^(')= -32t + 336](https://img.qammunity.org/2020/formulas/mathematics/middle-school/foc9rj2nq2c4krl0eh7rhlxgelnnu6w62u.png)
When
![H^(')=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nruo5blnvtmdyhyccue4htbzf4unigvuhc.png)
![= -32t + 336=0\\-32t=-336\\](https://img.qammunity.org/2020/formulas/mathematics/middle-school/83r1tvyawl3lzt5ehmj259a4qb1eiev9n4.png)
Divide both sides by -32
t= 10.5 seconds
(2) The maximum height occurs at the point where t= 10.5
![H= -16t^2 + 336t\\H= -16(10.5)^2 + 336(10.5)\\Max(H)=1764 feet](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7veufvise1xq2971s4gdf02t21o1eapkzd.png)
(3)The ash projectile returns back to the ground when its Height, H =0
![H= -16t^2 + 336t\\\\-16t^2 + 336t=0\\-16t^2 =- 336t\\-16t=-336\\t=21 seconds](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3t0y1e0ybo9ppl3dliybpr188r8vutva7d.png)
The ash projectile returns to the ground after 21 seconds.