73.3k views
1 vote
What must be the molarity of an aqueous solution of trimethylamine, (ch3)3n, if it has a ph = 11.20? (ch3)3n+h2o⇌(ch3)3nh++oh−kb=6.3×10−5?

User Will Glass
by
5.1k points

1 Answer

5 votes

0.040 mol / dm³. (2 sig. fig.)

Step-by-step explanation


(\text{CH}_3)_3\text{N} in this question acts as a weak base. As seen in the equation in the question,
(\text{CH}_3)_3\text{N} produces
\text{OH}^(-) rather than
\text{H}^(+) when it dissolves in water. The concentration of
\text{OH}^(-) will likely be more useful than that of
\text{H}^(+) for the calculations here.

Finding the value of
[\text{OH}^(-)] from pH:

Assume that
\text{pK}_w = 14,


\begin{array}{ll}\text{pOH} = \text{pK}_w - \text{pH} \\ \phantom{\text{pOH}} = 14 - 11.20 &\text{True only under room temperature where }\text{pK}_w = 14 \\\phantom{\text{pOH}}= 2.80\end{array}.


[\text{OH}^(-)] =10^{-\text{pOH}} =10^(-2.80) = 1.59\;\text{mol}\cdot\text{dm}^(-3).

Solve for
[(\text{CH}_3)_3\text{N}]_\text{initial}:


\frac{[\text{OH}^(-)]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^(+)]_\text{equilibrium}}{[(\text{CH}_3)_3\text{N}]_\text{equilibrium}} = \text{K}_b = 1.58* 10^(-3)

Note that water isn't part of this expression.

The value of Kb is quite small. The change in
(\text{CH}_3)_3\text{N} is nearly negligible once it dissolves. In other words,


[(\text{CH}_3)_3\text{N}]_\text{initial} = [(\text{CH}_3)_3\text{N}]_\text{final}.

Also, for each mole of
\text{OH}^(-) produced, one mole of
(\text{CH}_3)_3\text{NH}^(+) was also produced. The solution started with a small amount of either species. As a result,


[(\text{CH}_3)_3\text{NH}^(+)] = [\text{OH}^(-)] = 10^(-2.80) = 1.58* 10^(-3)\;\text{mol}\cdot\text{dm}^(-3).


\frac{[\text{OH}^(-)]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^(+)]_\text{equilibrium}}{[(\text{CH}_3)_3\text{N}]_\textbf{initial}} = \text{K}_b = 1.58* 10^(-3),


[(\text{CH}_3)_3\text{N}]_\textbf{initial} =\frac{[\text{OH}^(-)]_\text{equilibrium}\cdot[(\text{CH}_3)_3\text{NH}^(+)]_\text{equilibrium}}{\text{K}_b},


[(\text{CH}_3)_3\text{N}]_\text{initial} =((1.58*10^(-3))^(2))/(6.3*10^(-5)) = 0.040\;\text{mol}\cdot\text{dm}^(-3).

User Yemy
by
5.4k points