Answer:
b = 17 (rounded to the nearest whole number)
Explanation:
When there is 1 angle given and two sides of a triangle, we can use the cosine rule to solve for the unknown side.
Cosine Rule is given by
![c^2=a^2+b^2-2abCosC](https://img.qammunity.org/2020/formulas/mathematics/high-school/dx0b4rvh99qq10o8hctby8hsuwqli7xdc4.png)
Where c is the unknown side length,
a, b are the two given sides, and
C is the angle in between the two given sides.
Plugging in all the info into the formula and solving for c, gives us:
![b^2=(28)^2+(25)^2-2(28)(25)Cos(36.9)\\\\b^2=289.4415\\b=√(289.4415)\\ b=17.01](https://img.qammunity.org/2020/formulas/mathematics/high-school/vbpof12hro4hcdy8tuej2hs8jslz963bad.png)
Rounding to nearest whole number, b = 17