224k views
4 votes
What is the sum of the geometric series rounded to the whole number

What is the sum of the geometric series rounded to the whole number-example-1

1 Answer

0 votes

Answer:

2

Explanation:

The formula of the sum of a geometric sequence:


S_n=(a_1(1-r^n))/(1-r)

We have


\sum\limits_(x=0)^(15)2\left((1)/(2)\right)^x\to a_n=2\left((1)/(2)\right)^n

Calculate the common ratio:


r=(a_(n+1))/(a_n)


a_(n+1)=2\left((1)/(2)\right)^(n+1)

Substitute:


r=(2\left((1)/(2)\right)^(n+1))/(2\left((1)/(2)\right)^n)=\left((1)/(2)\right)^(n+1):\left((1)/(2)\right)^n\\\\\text{use}\ a^n:a^m=a^(n-m)\\\\r=\left((1)/(2)\right)^(n+1-n)=\left((1)/(2)\right)^1=(1)/(2)

Calculate the sum.


a_1=2\left((1)/(2)\right)^1=2\left((1)/(2)\right)=1;\ r=(1)/(2),\ n=15\\\\S_(15)=(1\left(1-\left((1)/(2)\right)^(15)\right))/(1-(1)/(2))=(1-(1)/(2^(15)))/((1)/(2))=\left(1-(1)/(2^(15))\right)\left((2)/(1)\right)=2-(2)/(2^(15))=2-(1)/(2^(14))\\\\=2-(1)/(16384)=1(16383)/(16384)\approx2

User Renne
by
7.9k points