ANSWER
The required equation is:
![9 {x}^(2) - 25{y}^(2) + 250y - 85 0=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yh0hitojk67r855hqevswc33pm1zivot0l.png)
Step-by-step explanation
The given equation is
![9 {x}^(2) - 25 {y}^(2) = 225](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jdblk9056o6gf7v1phytom8dr53mhsk38e.png)
Dividing through by 225 we obtain;
![\frac{ {x}^(2) }{25} - \frac{ {y}^(2) }{9} = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/30ddeqv23jfciu05n74w5cc6b6boead3m4.png)
This is a hyperbola that has it's centre at the origin.
If this hyperbola is translated so that its center is now at (0,5).
Then its equation becomes:
![\frac{ {(x - 0)}^(2) }{25} - \frac{ {(y - 5)}^(2) }{9} = 1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/njf8syq7heyc9rj39dklhfggmkdaogqq8p.png)
We multiply through by 225 to get;
![9 {x}^(2) - 25( {y - 5})^(2) = 225](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gycla4nhoppy3o0y7eve4jlbata83d560l.png)
We now expand to get;
![9 {x}^(2) - 25( {y}^(2) - 10y + 25 )= 225](https://img.qammunity.org/2020/formulas/mathematics/middle-school/17byqqaqdylmns080kaa9n1duj6kqg7yb2.png)
![9 {x}^(2) - 25{y}^(2) + 250y - 6 25 = 225](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgcyhzfidy6ftqdldk84o4lafdnj02qjz6.png)
The equation of the hyperbola in general form is
![9 {x}^(2) - 25{y}^(2) + 250y - 85 0=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yh0hitojk67r855hqevswc33pm1zivot0l.png)