Consider we need to find the equation of the parabola.
Given:
Parabola with focus (2, 1) and directrix x=-8.
To find:
The equation of the parabola.
Solution:
We have directrix x=-8. so, it is a horizontal parabola.
The equation of a horizontal parabola is
...(i)
where, (h,k) is center, (h+p,k) is focus and x=h-p is directrix.
On comparing focus, we get
![(h+p,k)=(2,1)](https://img.qammunity.org/2022/formulas/mathematics/college/ee4sl1ocoxsp5ie8ljzmwzh5y67zzaz9e7.png)
...(ii)
![k=1](https://img.qammunity.org/2022/formulas/mathematics/college/3sny0ryep6cregw379gg5o4ngqvcgcy786.png)
On comparing directrix, we get
...(iii)
Adding (ii) and (iii), we get
![2h=2+(-8)](https://img.qammunity.org/2022/formulas/mathematics/college/35dbcphu0fjjfc047vql12hgmsqyofm506.png)
![2h=-6](https://img.qammunity.org/2022/formulas/mathematics/college/gr1coy7aywheggp1e0obhrkdm4ylyt0xma.png)
Divide both sides by 2.
![h=-3](https://img.qammunity.org/2022/formulas/mathematics/college/5v7fzmvxws9km9go4h1l30vhjjhl4lt1cn.png)
Putting h=-3 in (ii), we get
![-3+p=2](https://img.qammunity.org/2022/formulas/mathematics/college/fuajsh4o99egbdpdbry487iph80bhdil4q.png)
![p=2+3](https://img.qammunity.org/2022/formulas/mathematics/college/oj6a8bwm6gw4ejx27rcyoqyvx3g2waynvi.png)
![p=5](https://img.qammunity.org/2022/formulas/mathematics/college/dq979jjyhya5hapowdqdjdrr2x4148otu1.png)
Putting h=-3, k=1 and p=5 in (i), we get
![(y-1)^2=4(5)(x-(-3))](https://img.qammunity.org/2022/formulas/mathematics/college/2u39tix8wywbmkhs6jm13519ylqzw4t3c2.png)
![(y-1)^2=20(x+3)](https://img.qammunity.org/2022/formulas/mathematics/college/ujsnei1ga13jm0b0bkpulhrkcljfmokmso.png)
Therefore, the equation of the parabola is
.