158k views
3 votes
Derivative of these questions


Derivative of these questions ​-example-1
User Prranay
by
8.8k points

1 Answer

6 votes

Answer:
\bold{y'=(1)/(2(a-b)^2)\bigg((1)/(√(x+a))+(1)/(√(x+b))\bigg)}

Explanation:


y=(1)/(√(x+a)-√(x+b))\\\\\\\text{Rationalize the denominator:}\\y=(1)/(√(x+a)-√(x+b))\bigg((√(x+a)+√(x+b))/(√(x+a)+√(x+b))\bigg)\\\\\\y=(√(x+a)+√(x+b))/(x+a-x-b)\\\\\\y=(√(x+a)+√(x+b))/(a-b)\\\\\\\text{Apply the derivative (derivative of the numerator (top) divided by the}\\\text{denominator (bottom) squared).}


\text{Derivative of }√(x+a)\quad \rightarrow \quad (x+a)^{(1)/(2)}\quad = \quad (1)/(2)(x + a)^{-(1)/(2)}\\\\\text{Derivative of }√(x+b)\quad \rightarrow \quad (x+b)^{(1)/(2)}\quad = \quad (1)/(2)(x + b)^{-(1)/(2)}\\\\\\\text{Derivative of}\ (√(x+a)+√(x+b))/(a-b):\\\\= \frac{(1)/(2)(x + a)^{-(1)/(2)}+(1)/(2)(x + b)^{-(1)/(2)}}{(a-b)^2}


\text{Factor out }(1)/(2)\ \text{from the numerator:}\\\\\frac{(x+a)^{-(1)/(2)}+(x+b)^{-(1)/(2)}}{2(a-b)^2}\\\\\\\text{Move the terms with negative exponents to the denominator:}\\\\=(1)/(2(a-b)^2)\bigg((1)/(√(x+a))+(1)/(√(x+b))\bigg)

User KickinMhl
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories