84.3k views
5 votes
H(x)=x-1/2 is a factor of f(x)=2x^4+x^3+x-3/4

User AaronBaker
by
5.3k points

2 Answers

3 votes

Answer:

True

Explanation:

User Angie Quijano
by
5.4k points
4 votes

Answer:


\large{\text{Yes.}\ f(x)=x-(1)/(2) \text{is a factor of}\ f(x)=2x^4+x^3+x-(3)/(4).}

Explanation:


\text{If}\ (x-a)\ \text{is a factor of}\ p(x),\ \text{then}\ p(a)=0.


\text{Thereofre if}\ h(x)=x-(1)/(2)\ \text{is a factor of}\ f(x)=2x^4+x^3+x-(3)/(4),\ \text{then}\ f\left((1)/(2)\right)=0.


\text{Substitute:}\\\\f\left((1)/(2)\right)=2\left((1)/(2)\right)^4+\left((1)/(2)\right)^3+(1)/(2)-(3)/(4)=2\left((1)/(16)\right)+(1)/(8)+(1)/(2)-(3)/(4)\\\\=(1)/(8)+(1)/(8)+(1\cdot2)/(2\cdot2)-(3)/(4)=(1+1)/(8)+(2)/(4)-(3)/(4)=(2)/(8)+(2)/(4)-(3)/(4)\\\\=(1)/(4)+(2)/(4)-(3)/(4)=(1+2-3)/(4)=(0)/(4)=0

User Ali Nikneshan
by
4.8k points