368,955 views
19 votes
19 votes
Find the angle between the vectors.
U=< -4,-3>
V = < -1,5>

User Siddhusingh
by
2.4k points

2 Answers

11 votes
11 votes

Explanation:

The formula for the angle between vectors


\alpha = \cos {}^( - 1) ( (uv)/( |u| |v| ) )

To multiply vectors, multiply the first component and multiply the second component and add them.

(-4*-1) + (-3*5)= 4-15=-11.

To find magnitude of vectors, use the Pythagorean theorem


u = \sqrt{ { - 4}^(2) + { - 3}^(2) } = 5


v = \sqrt{ - 1 {}^(2) + 5 {}^(2) } = √(26)

so


|u| |v| = 5 √(26)

Know we have,


\alpha = \cos {}^( - 1) ( (7)/(5 √(26) ) )


\alpha = 105.94

in degrees,


\alpha = 1.849

in radians

User Sathyajith Bhat
by
2.9k points
10 votes
10 votes

Answer:

115.6° (1 d.p.)

Explanation:

To find the angle between two vectors:

  • Create a triangle with the vectors as two sides and the included angle θ between them.
  • Find the magnitude of each vector (the length of each side of the triangle).
  • Use the cosine rule to find the angle θ.

**Please see attached for the triangle diagram**

Given vectors:


\textbf{u}=-4\textbf{i}-3\textbf{j}


\textbf{v}=-\textbf{i}+5\textbf{j}

Use Pythagoras Theorem to find the magnitude of each vector:


\implies |\textbf{u}|=√((-4)^2+(-3)^2)=5


\implies |\textbf{v}|=√((-1)^2+5^2)=√(26)


\overrightarrow{\text{UV}}=\textbf{v}-\textbf{u}=(-\textbf{i}+5\textbf{j})-(-4\textbf{i}-3\textbf{j})=3\textbf{i}+8\textbf{j}


|\overrightarrow{\text{UV}}|=√(3^2+8^2)=√(73)

Cosine Rule (for finding angles)


\sf \cos(C)=(a^2+b^2-c^2)/(2ab)

where:

  • C = angle
  • a and b = sides adjacent the angle
  • c = side opposite the angle

Find angle θ using the cosine rule:


\implies \cos(\theta)=\frac{|\textbf{u}|^2+|\textbf{v}|^2-|\overrightarrow{\text{UV}}|^2}{2|\textbf{u}||\textbf{v}|}


\implies \cos(\theta)=(5^2+\left(√(26)\right)^2-\left(√(73)\right)^2)/(2(5)\left(√(26)\right))


\implies \cos(\theta)=(-22)/(10√(26))


\implies \theta=\cos^(-1)\left((-22)/(10√(26))\right)


\implies \theta=115.5599652...^(\circ)

Therefore, the angle between the vectors is 115.6° (1 d.p.).

Find the angle between the vectors. U=< -4,-3> V = < -1,5>-example-1
User Aleah
by
2.7k points