Answer:
B)
![(1)/(x^(21) y^(12) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1i8c707p5ye3tqg5z52ug5fjxdko66gtdz.png)
Explanation:
The given expression is
![(((x^(-3) (y^(2)) )/(x^4 y^6) )^3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6898dfi2idjeqzv27brrjco1x2fa395erm.png)
Now we can bring the power 3 inside the bracket using the rule
![(a^(m) )^n = a^(mn)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rc6ha2xscwro1dfgkvrpjhsc1l9cvd6ked.png)
=
![(x^(-9)(y^6) )/(x^(12)y^(18) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vz79linwvinszgh3uvmqwm3gi023zw09au.png)
Now we have to use the quotient rule and simplify it.
![(a^m)/(a^n) = a^(m-n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6tjzwwbvrhkbm7xr9q4brxa9n7jcy6bfg2.png)
Using the above rule, we get
=
![x^(-9 -12) *y^(6-18)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t6g54cz4i2hcewxi9a7wpmiwpjgncwe7pa.png)
=
![x^(-21) *y^(-12)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nj4kpvnd6w3ff4bre1vz1xvz0h2zlhe2sy.png)
Since we have a negative exponent. We can rewrite using the rule a^-m = 1/a^m
=
![(1)/(x^(21) y^(12) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1i8c707p5ye3tqg5z52ug5fjxdko66gtdz.png)
Therefore the answer is B)
![(1)/(x^(21) y^(12) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1i8c707p5ye3tqg5z52ug5fjxdko66gtdz.png)